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We study a recently proposed equation for the avalanche distribution in the Bak-Sneppen m
We demonstrate that this equation indirectly relatest, the exponent for the power law distribution
of avalanche sizes, toD, the fractal dimension of an avalanche cluster. We compute this relat
numerically and approximate it analytically up to the second order of expansion around the mean
exponents. Our results are consistent with Monte Carlo simulations of the Bak-Sneppen model i
and two dimensions. [S0031-9007(97)05281-2]

PACS numbers: 64.60.Lx, 64.60.Ak, 64.60.Fr, 87.10.+e
nts
ling
ase
for
nts
s
n

er,
hy
is
nt

red
us
in

la-
tion
u-

ond
-

ard
he
po-
en-
ion
che

-
f

i-

is-
-
es

e

The Bak-Sneppen (BS) model [1] has become one
the paradigms of self-organized criticality (SOC) [2]. Th
rules of its dynamics are very simple: the state of the mod
is completely defined byLd numbersfi arranged on a
d-dimensional lattice of sizeL. At every time step the
smallest of these numbers and its2d nearest neighbors are
replaced with new uncorrelated random numbers, draw
from some distributionP s fd. This “minimalistic” dynam-
ics results in a remarkably rich and interesting behavior.
fact, there exists a whole class of models calledextremal
models [3], which evolve according to similar rules, an
share many similar features with the BS model. In a
these models the update happens only at the site carry
the global minimum of some variable. The oldest, and pe
haps the most widely known of these models, is invasio
percolation [4]. The BS model, being the simplest and th
most analytically treatable extremal model, occupies t
place of an “Ising model” in this class.

The self-organized critical nature of the BS mode
(as well as of other extremal models) is revealed in i
ability to naturally evolve towards a stationary state whe
almost all of the variablesfi are above a critical threshold
fc. The dynamics in the stationary state is characteriz
by scale-free bursts of activity oravalanches,which form a
hierarchical structure [1,5] of subavalanches within bigg
avalanches. The introduction of an auxiliary parameterf
[3] allows one to describe the system within the paradigm
of standard critical phenomena. Indeed, the distributio
Pss, fd of avalanche sizess close tofc, has the same quali-
tative behavior of the cluster distribution of percolation [6
above and below the critical thresholdpc: For f , fc,
Pss, fd has a finite cutoff, reminiscent of an undercritica
system. Asf ! fc the cutoff diverges and a scale-free
distribution Pss, fcd , s2t emerges. In the overcritical
regimef . fc there is a nonzero probability to start an
infinite avalanche, but all finite avalanches again have
finite cutoff. Scaling arguments [3] allow one to derive
all critical exponents of a general extremal model in term
of only two independent ones, sayt and D —the fractal
dimension of the avalanche cluster.
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In order to compute these two remaining expone
one has to resort to methods which go beyond sca
arguments. Apart from the solution of the mean-field c
[7], and a real space renormalization group approach [8]
d ­ 1, a systematic theory to compute the BS expone
is still lacking. A promising step in this direction wa
recently taken by one of us [9] with the introduction of a
exactequation for the avalanche distribution. Hereaft
we will refer to this equation as the avalanche hierarc
equation (AHE). It was shown that inside the AHE
hidden an infinite series of equations, relating differe
moments of the avalanche size distribution.

In this Letter we demonstrate that, as it was conjectu
in [9], the AHE indirectly relates these two exponents, th
reducing the number of independent critical exponents
the BS model to just one. Contrary to simple rational re
tions based on scaling arguments [3], this exponent rela
is highly nontrivial. First, we display the numerical sol
tion of the AHE. Then we perform a perturbative “e” ex-
pansion around the mean-field solution, up to the sec
order in e. The numerical solution of AHE is in agree
ment with the MC simulations ind ­ 1, 2 [3,10] and is
well approximated by the results of thee expansion up to
second order. They constitute a significant step forw
towards the full solution of the BS model. However, t
unusual type of the expansion around the mean-field ex
nents leaves open the question of the upper critical dim
siondc in the model. It also does not answer the quest
about the geometrical, fractal properties of the avalan
cluster. Instead, given an avalanche fractal dimensionD
it enables one to derive the powert of the avalanche dis
tribution. Similarly, in ordinary percolation the power o
cluster distributiont is related to the cluster’s fractal d
mensionD via a hyperscaling relationt ­ 1 1 dyD [6].

Following Ref. [9], let us consider the exponential d
tributionP s fd ­ e2f , f . 0. This simplifies the expres
sions without loss of generality [11]. To define avalanch
one records thesignal of the model, i.e., the value of th
global minimal numberfminstd as a function of timet.
Then for every value of an auxiliary parameterf, an f
© 1998 The American Physical Society 1457
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avalanche of size (temporal duration)s is defined as a
sequence ofs 2 1 successive events, whenfminstd , f,
confined between two events, whenfminstd . f. In other
words, the events, whenfminstd . f, divide the time axis
into a series of avalanches, following one another.Pss, fd
is the distribution of sizes off avalanches. With this defi-
nition, let us analyze how the distributionPss, fd changes
when the auxiliary parameterf is raised by an infinitesimal
amountdf. Most f avalanches will survive this increas
and map tof 1 df avalanches, but some will disappea
and some newf 1 df avalanche will appear. These two
processes both arise from the merging of twof avalanches
of sizess1 ands2 into onef 1 df avalanche of sizes ­
s1 1 s2. Merging occurs when the firstf avalanche is
terminated by the selection of a sitei with a valuefi ­
fminstd which lies in the intervalf f, f 1 dfd. Because
of the infinitesimal nature ofdf we can disregard situ-
ations when more than two consecutive avalanches me
together. This ensures that the sitei, where the merging
of two avalanches occurs, is one of the sites updated
the firstf avalanche [12]. It was also rigorously prove
in [3,9] that numbersfi on theseRdss1d sites are in fact
uncorrelatedand distributed asPf s f 0d ­ ef2f 0

, so that
dPf s f 0dydf 0 ­ 1. Therefore, the probability of such a
merging event to linear order indf, is Rdss1d df [9]. The
differential change inPss, fd is then given by the AHE [9]:

≠fPss, fd ­
s21X
s1­1

Rdss1dPss1, fdPss 2 s1, fd

2 RdssdPss, fd

where the first term on the right-hand side (RHS) describ
the gain of avalanches of sizes due to merging of two
consecutive avalanches of sizes1 ands2 ­ s 2 s1. The
second term is instead the “loss term” due to avalanch
of sizes merging to form larger avalanches.

To proceed further one needs to introduce the scal
ansatzRdssd , sm for the number of sites, updated at lea
once in an avalanche of sizes. This power law relation
is a consequence of thespatiotemporalfractal structure of
the avalanches in the BS model [13]. The exponentmsdd,
which is an independent “input” variable in the AHE, de
pends on the dimensionality of the model and the frac
structure of the avalanche. Physically, the exponentm re-
lates the volume of the spatial projection of an avalanc
cluster to its temporal durations. If this spatial projection
is a dense object with a fractal dimension equal to the
mension of spaced, m is given bydyD. In this expression,
D is the fractal dimension of the avalanche [3] define
throughs ­ RD . This is known to be true ind ­ 1, where
the connected nature of an avalanche cluster ensures
compactness (absence of holes) of its projection. Ind ­ 2
the projection of the avalanche can have holes, but s
it was numerically found to be dense (i.e., have a frac
dimensiond) [3]. It is clear that, as the dimensionality
of space is increased, the exponentm should approach1,
since multiple updates of the same site become less and
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likely and the volume of the projection should be closer an
closer to the total volumes2d 1 1ds of the avalanche it-
self. The “hyperscaling” relationm ­ dyD will be clearly
violated ford . dc, where one hasD ­ 4, m ­ 1 [3,14].
From this it follows thatdc $ 4 for the BS model.

The introduction of the “phenomenological” exponen
m closes the AHE, which then reads

≠fPss, fd ­
s21X
s1­1

s
m
1 Pss1, fdPss 2 s1, fd 2 smPss, fd .

(1)

The solution of Eq. (1) exhibits a power law behavio
Pss, fd , s2t when f is at its critical valuefc. Close
to fc it takes a scaling form

Pss, fd ­ s2tFsssDfd , (2)

where Df ­ fc 2 f. The exponentst, s, and m are
related throught ­ 1 1 m 2 s [3]. Perhaps a more
familiar form of this exponent relation involves the cor
relation length exponentn ­ 1ysD. The relation then
becomest ­ 1 1 sd 2 1yndyD. It has been conjectured
[9] that Eq. (1) also indirectly relates the exponentsm and
t. In order to check this conjecture we numerically in
tegrated Eq. (1) forward inf with the initial condition
Pss, 0d ­ ds,1 for several values ofm [15]. In order to lo-
cate the critical pointfcs md, a least square fit of logPss, fd
vs logs was performed runtime for each value off. The
valuex2s fd of the sum of the squared distances from the fi
drops almost to zero in a very narrow region (see Fig. 1
which then allows for a very precise estimate offcs md
and ts md. The results for the latter are shown in Fig. 2
(h). These results are in perfect agreement with Mon
Carlo estimates oft in one and two dimensions [3,10]. In
d ­ 1, m ­ 1yD ­ 0.411s2d andt ­ 1.07s1d, while the
results of numerical integration of (1) givets0.4d ­ 1.058.
In d ­ 2 the Monte Carlo resultsm ­ 2yD ­ 0.685s5d,
t ­ 1.245s10d are also consistent with our relation giving
ts0.7d ­ 1.238. This confirms that Eq. (1) indeed con-
tains anovelnontrivial relation betweent andm.

FIG. 1. The plot of x2 and t vs f for m ­ 0.411 and
smax ­ 521, 1024, and2048.
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FIG. 2. The relationtsmd: numerical solution of Eq. (1)
(h, with smax ­ 1024), expansion up to order1 2 m (dashed
line), ands1 2 md2 (full line). The results of the Monte Carlo
numerical simulations ind ­ 1, 2 [3] and the mean-field result
[7] are also shown.

In order to address this relation analytically, let us tak
the Laplace transform of Eq. (1) [9]. The AHE, with
psa, fd ;

P`
s­1 Pss, fde2as, reads

≠f lnf1 2 psa, fdg ­
X̀
s­1

Pss, fdsme2as. (3)

psa, fd has the scaling form given by

psa, fd ­ 1 2 at21hsDfyasd . (4)
This scaling form follows from Eq. (2) and the scal-
ing functions are related throughhsxd ­

R`

0 fFs0d 2

Fsxysde2ygy2t dy.
The scaling functionhsxd [as well asFsxd] is analytic

at x ­ 0. At any Df fi 0, psa, fd is analytic in a

and its expansion in powers ofa is related [9] to the
moments ksklf of Pss, fd. These diverge asksklf ­
s21dk11b6

k jDfj2sk1s2mdys in the limit Df ! 06, below
(1) and above (2) the critical pointfc (for more details
see [9]). This behavior is described by the largejxj
asymptotics ofhsxd and it requires thathsxd jxjss2mdys for
jxj ¿ 1, must be an analytic function ofjxj21ys :

hs6jxjd ­ jxjsm2sdys
X̀
k­0

b6
k jxj2kys . (5)

As we will see later, it is the condition thathsxd has the
desired asymptotic form (5), which fixes the value ofs for
a givenm.

With the scaling ansatz (4), after recovering the scalin
relation

t ­ 1 1 m 2 s , (6)
Eq. (3) becomes

h0sxd ­
hsxd

Gs1 2 md

Z 1

0
dz

xzh0sxzd 2
m2s

s hsxzd
s1 2 z1ysdm

.

(7)
e

g

We were not able to solve Eq. (7) and find the exa
relationssmd. However, we can explicitly solve AHE for
m ­ 1. This corresponds to the mean-field version of th
BS model, which has been studied in detail [7]. We wi
rederive their results using our approach. Our strate
will then be to perform a systematice expansion around
the mean-field solution, wheree ­ 1 2 m. This clearly
differs from the standard́ ­ d 2 dc expansion (note
that the upper critical dimensiondc for the BS model is
still an open issue), since the dimensionality of the syste
does not enter directly into our discussion.

For m ­ 1 Eq. (7) reduces to

h0sxd ­ sxhsxdh0sxd 2 s1 2 sdh2sxd . (8)

Its solution readshsxd f1 2 xhsxdgs21 ­ a0, with a0 an
integration constant. Equation (5) implies a largex behav-
ior hsxd . x21sC 1 Dx21ys 1 . . .d, compatible with the
solution of Eq. (8) only ifC ­ 1 ands ­ 1 2 s ­ 1y2.
For a0 ­ 1 one recovers a mean-field solution [7]:

hs0dsxd ­

p
4 1 x2 2 x

2
. (9)

The above derivation demonstrates that the knowledge
the whole scaling functionhsxd is necessary in order to
find the exponents.

To proceed beyond the mean-field case we perform
1 2 m ; e expansion of Eq. (7) around them ­ 1 solu-
tion (9). We puts ­ 1

2 1 ce, wherec is to be determined
later. It is convenient to change variables toz ­ hs0dsxd
and to sethsxd ­ zf1 1 efszd 1 Ose2dg. Keeping only
terms linear ine one gets an equation forf:

1
2

zs1 1 z2d≠zf ­ f 2 1 2 cs1y2d

1 s1 1 2cdz2 1 2 ln
1 1 z2

2z
,

wherecsxd is the derivative of lnGsxd. This equation has
to be solved with the boundary conditionfsz ­ 1d ­ 0
[i.e., hs0d ­ 1]. After some algebra one gets

fszd ­ A
1 2 z2

1 1 z2
2 2 ln

1 1 z2

2

1
2 1 s2 2 4cdz2

1 1 z2
ln z , (10)

whereA ­ 2 1 cs1y2d > 0.036 49 . . . . The value ofc
is set by the requirement thatfszd must give rise to the
desired asymptotic behavior ofhsxd. The singular behav-
ior atz . 1yx ! 0 must be matched to the asymptotics o
hsxd for x ! `. To ordere, Eq. (5) requires thathsxd ­
x2122efsx2214ced, wherefs yd is analytic aty ­ 0 [to or-
dere0, fs yd ­ s

p
1 1 4y 2 1dy2]. Expanding this rela-

tion to ordere one finds that the singular part offszd must
have exactly the form 2f1 1 2cz2ys1 1 z2dg ln z. The
only value ofc which matches this requirement to the las
term in the RHS of Eq. (10) isc ­ 0. Note that the whole
1459
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asymptotic behavior, and not just its leading part, is ne
essary to determinec.

This concludes the first order of the expansion ine.
We have found that in the first order ine the critical
exponents did not change. The exponent relation (6
then givest ­ 3y2 2 e. Finally, the analytic form of
the scaling functionhsxd, containing all information about
the amplitudes of avalanche moments, is given by

hsxd ­

p
4 1 x2 2 x

2

∑
1 1

x2

4

∏
2e

3

∑
1 1

eAx
p

4 1 x2

∏
1 Ose2d .

The extension of this procedure to higher orders ine

is straightforward, even though it involves much heavie
algebra. Skipping the details [16], up to second order
e we find

s ­
1
2

2
4
3

sg 1 ln 2 2 1de2 1 Ose3d

. 0.5 2 0.3605e2 1 Ose3d ; (11)

t . 1.5 2 e 1 0.3605e2 1 Ose3d . (12)

Here g . 0.5772 is the Euler’s constant. The explicit
expression forhsxd at this order is not particularly
illuminating, so we refrain from displaying it here. As
seen in Fig. 2, the expansion up to the first 2 orders is
excellent agreement with numerical data down tom ø 0.6
(e ø 0.4).

On the other side, Fig. 2 seems to suggest a singu
behavior of tsmd as m ! 0. The specialty ofm ­ 0
can be understood by observing that in this casePss, fd
does not obey scaling. Indeed,m ­ 0 corresponds to
a trivial model with only one constantly updated site
which can be considered as a0-dimensional lattice. The
probability of f avalanches of sizes is trivially derived
from the probabilityPsss fminstd , fddd ­ 1 2 e2f that the
signal is belowf: Pss, fd ­ e2f s1 2 e2f ds21. This is
indeed the solution of Eq. (1) withsm ­ 1. There is no
phase transition [numerically we foundfcsmd , 1ym !
` as m ! 0] and the avalanche distribution always ha
an exponential cutoff. This suggests thatd ­ 0 can
be interpreted as the lower critical dimension for th
BS model [note thatPss, fd in the d ­ 0 BS model is
very similar to the cluster size distribution in thed ­ 1
percolation [6] ].

In conclusion, we have shown that the avalanche hie
archy equation introduced by one of us in [9] yields a ne
relation between exponents in the Bak-Sneppen mod
thus reducing the number of independent exponents to j
one. This relation expressest, the power law exponent
in the avalanche probability distribution, in terms ofD,
the mass dimension of an avalanche cluster. We we
able to perform a systematic expansion of this relatio
around the mean-field exponents, carried to the seco
order in this work. The success of this approach su
1460
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gests that a completé ­ d 2 dc expansion for the BS
model could be possible. The accomplishment of this tas
however, calls for a systematic study of the BS model
high dimensions and for identification of the upper critica
dimensionalitydc.
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